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Thermal-shock crack patterns explained by 
single and multiple crack propagation 
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The phenomenon of thermal-shock cracking in ceramics is approached theoretically and 
experimentally. Sintered slabs made from a glass-quartz powder mix were quenched in water 
in order to generate crack patterns of various types, depending on the severity of the shock. 
The patterns serve as evidence for a scheme set up with the aim of explaining the variety of 
ways in which materials respond to thermal shock. The fracture-mechanical explanations are 
based on the time-dependent thermal load and on the concept of an energy release rate, with 
single and multiple crack propagation starting from randomly distributed initial flaws on the 
surface. 

1. Introduct ion 
The formation of thermal-shock crack patterns can be 
appropriately discussed in terms of fracture mechan- 
ics, whose central notion is a crack propagation cri- 
terion expressed by the stress intensity KI or the energy 
release rate fr 

The implications of time-dependent ~ curves for 
single crack propagation due to thermal shock have 
been anticipated but not thoroughly worked out by 
several authors. Kerkhof and co-workers [1, 2] calcu- 
lated the stress intensity factor K~, which is related to 
fq in a simple way, of notched slabs with ideal cooling 
on one face. The corresponding problem for cylinders 
with multiple radial notches was discussed by Evans 
and Charles [3]. Emery and Kobayashi [4] calculated 
KI for rectangular bars subjected to thermal shock on 
all side faces. 

This paper is composed according to the following 
scheme. First, we present thermal-shock crack patterns 
obtained by the quenching of ceramic slabs. Second, 
we try to explain the patterns by unstable and stable 
crack propagation governed by time-dependent fq 
curves, taking into account the results by Nemat- 
Nasser et al. [5] and Bazant et al. [6] on the mutual 
interaction of cracks. In view of the nature of the 
problem we chose not to formulate it mathematically 
but preferred to derive our results along the lines of 
physical reasoning aided by graphical representations, 
the latter incorporating essential features of the exact 
solutions. Thus, most of the mathematics involved is 
left hidden in the plots, and attention is focused on 
conclusions, results, and implications in verbal form. 
For conciseness we refer to a publication [7] where 
some auxiliary ideas have been outlined in more 
detail. The experimental procedure is a modified ver- 
sion of that used by Davidge and Tappin [8]. 

2. Experimental  procedure 
Quartz and glass powders (median grain size 5.8 and 
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2.9 #m, respectively) were dry-mixed, then wet-mixed 
after the addition of auxiliary st:bstances and spray- 
dried. The granulate containing 10 vol % quartz was 
pressed at 100MPa into slabs of size 5mm x 
10 mm x 60 mm and subsequently sintered without 
pressure. The porosity after sintering was 4%. The 
samples were ground to obtain smooth parallel faces, 
then stacked as seen in Fig. 1 in order to prevent access 
of the coolant to the side faces. The stacks were heated 
in an alumina tube and from there immediately 
dropped into water at room temperature. After dry- 
ing, the samples were covered with a fluorescent liquid 
for 5 min and then washed in water and acetone. The 
liquid still present within the cracks was made to 
fluoresce by ultraviolet light. 

The crack patterns thus made visible were photo- 
graphed by using a special filter. Four faces of every 
sample are shown in Fig. 2. The photographs have 
been arranged so that the cracks on the side faces, 
which mainly concern us here, can be easily related to 
those on the cooled surface. 

With increasing severity of shock the stress changes 
from mainly uniaxial to mainly plane, as seen from the 
net-like surface crack patterns. Our samples were 
given the shape of slabs with the narrow faces cooled, 
with the intention of approaching uniaxial stress in the 
cooled layer, at least with lower AT values where 
crack propagation occurs when the cooling has pene- 
trated deep into the sample. (For explanation see 
Section 4.) The purpose was to obtain simple crack 
patterns which exhibit no additional structure in the 
third dimension. Indeed our samples show patterns 
that are mainly simple in this sense, up to moderate 
shocking temperatures (Figs 2a and b). 

Evidently the crack density increases with severity 
of shock. Furthermore, there are subtle features hid- 
den in the patterns whose significance may not be 
self-evident at first sight: At higher AT, there is a 
tendency to the ordering of cracks with respect to 
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Figure 1 Stack of samples prepared for thermal shocking. 

length and spacing. There is a tendency to form a kink 
in the crack path at a certain depth which decreases 
with increasing AT (see arrows in Fig. 2). These 
features play an essential part in the following 
considerations. 

3. Crack penetration history 
Thermal shocking gives rise to tensile stress within the 
cooled layer. The stress is largest at the surface and 
decays with depth. A qualitative understanding can be 
reached without knowing the thermal stress field 
exactly. As we intend to discuss cracking as a two- 
dimensional phenomenon observable on the side faces 
of samples of  small thickness, we will not worry at 
present about what is going on in the third dimension. 
The formation of surface crack patterns is considered 
later. 

The crack patterns as they appear on the side faces 
suggest that they have been formed in at least two 
steps. So understanding the crack patterns requires 
understanding their history, which can be achieved by 
considering time-dependent energy release rates. 

Figure 2 Thermal shock crack patterns made visible by fluorescent liquid on side faces (wide strips) and cooled surface (narrow strips). Only 
part of every sample is shown. Arrows indicate supposed depth of unstable cracking. AT = (a) 159, (b) 181, (c) 217, (d) 233, (e) 300, (f) 
340 K. 
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Figure 3 Relation between energy 
release rate N and crack length 
(schematic). ( ) Family of  curves 
generated by time dependence, 
and ( - - )  their envelope, which is 
essential for crack propagation. 
Arrows refer to final crack lengths 
for three arbitrarily chosen values 
of  the temperature difference in 
quenching, AT. Solid and open 
arrows refer to unstable and stable 
propagation, respectively; x = 
ratio between crack length and 
sample dimension b, c~ = thermal 
expansion coefficient, E = Young's  
modulus,  r = xt/b 2 = normalized 
time, x = thermal diffusivity. 

Information concerning the latter can be obtained by 
physical reasoning as explained in the Appendix. With 
the crack propagation criterion ~ >/ ~c and the family 
of ~ curves in Fig. 3, essential features of the crack 
history can be derived. 

In order to explain the observed crack patterns we 
proceed as follows. We derive possible crack histories 
from the schematic N curves and substantiate them by 
experimental evidence. In doing so we distinguish two 
cases with respect to severity of shock: first, shocking 
slightly above the threshold below which there is no 
cracking, AT > ATe, and, second, shocking well 
above that threshold, AT >> ATe. 

3.1. AT equal  to or slightly above  ATc 
At the threshold of cracking, at AT = ATe, the tem- 
perature difference in quenching is just high enough to 
activate the largest of the small pre-existing cracks, 
whose relative length (i.e. length with respect to 
sample size) is denoted by Xom, where Xom < 1. In Fig. 
3, cracks of length Xom start to propagate at the 
(normalized) time ~'3 when ff(Xom ) reaches fie. This 
condition can be reformulated in the way that the 
envelope of the family of (r curves must intersect the 
horizontal straight line representing (r at Xom. Since 
this occurs always on the upward slope of the curve, 

increases with crack propagation, which implies 
unstable propagation. (In our figures, unstable 
propagation is always indicated by solid arrows.) How 
far the crack moves unstably depends on how much of 
the excess energy released (i.e. fr - f~ accumulated 
along the crack path) is re-absorbed by the running 
crack tip after (r has dropped below (9~. There is 
experimental evidence [9, 10] that the excess released 
energy is not dissipated immediately; Fig. 3 refers to 
materials with very small Xom, which means high 
strength, where unstable cracking may overshoot the 
envelope. 

Increasing AT above ATo means lowering the hori- 
zontal line representing ff~ in Fig. 3, as a consequence 
of our normalized representation. So the initial cracks 
of relative length Xom start a bit earlier (at ~2, for 
instance). They quickly overshoot the slowly changing 
fr curve and then stop. As f9 is still increasing, smaller 
initial flaws are activated in addition to the largest 
ones. The stopped cracks move on after a while when 
their f# exceeds fgc again, being pushed along stably as 
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the intersection point between the downward part of 
the f# curve and the fr line moves to the right until it 
touches the envelope. Thus the final crack length 
xf(AT) is determined by the envelope of the family of 

curves. 
If AT is chosen only slightly above ATe, the mutual 

separations of cracks are much larger than their 
lengths, so that crack start and propagation are essen- 
tially governed by the ff curves of single-crack 
propagation. The smallest crack to be started is deter- 
mined by the envelope again, and thus is only a little 
smaller than Xo=. 

3.2, AT well above AT c 
With larger A T, unstable cracking is partly suppressed 
in favour of subsequent stable crack growth, as seen 
from Fig. 3. Also with increased severity of shock, 
cracks start at ever shorter times when the cooling has 
penetrated into smaller depths, as explained above. As 
a consequence, unstable crack paths become shorter. 
The higher the value of AT, the smaller are the initial 
flaws that can be induced to grow into cracks. Since 
the smaller flaws usually outnumber the larger ones, 
the resulting cracks become more closely spaced. The 
unloading of the vicinity of every crack puts a limit to 
the crack density. Thus the average spacing of unstably 
grown cracks is expected to be roughly equal to their 
length. A tendency to this kind of order is found in 
Figs 2c and d, and is probably present also at higher 
AT but not clearly visible there because of the small- 
ness of the distances. (The unstably traversed part of 
the crack paths supposedly shows up in the patterns, 
as explained in Section 4, and indicated by arrows in 
Fig. 2.) 

As the cooling penetrates further in depth, subse- 
quent stable crack growth is governed by progressive 
mutual unloading. Thus the (~ curves of Fig. 3, repre- 
senting single cracks, do not apply any more. Not all 
cracks once started can be kept propagating: roughly 
speaking, every second crack is left behind. This will 
occur repeatedly every time the remaining cracks have 
grown to lengths competing with their lateral sepa- 
rations, forming in this way a hierarchical order of 
cracks. The phenomenon has been predicted theor- 
etically for highly symmetrical situations [5, 6], and 
verified experimentally by Geyer and Nemat-Nasser 
[11] with notched glass plates. In reality, of course, the 



regularity is partly spoiled by random influences of 
various origins. Surprisingly, the hierarchical order 
sometimes stands out clearly against the random 
background, as seen on our quenched ceramic slabs. 
(See, for instance, Fig. 2f, top right-hand region. Note 
that our samples have not been artificially notched.) 
The mechanism explained above seems to have been at 
work in the one unnotched glass plate shown in the 
paper by Geyer and Nemat-Nasser [11] in their Fig. 2. 

4. Observational details 
Let us look at our samples for more of the phenomena 
predicted above. As sparse cracking is observed at 
AT = 159 K while at 154 K there is no cracking at all, 
ATe must be situated between these values. A com- 
prehensive view of the side faces of the samples reveals 
the existence of a characteristic length affecting the 
shape of the cracks independent of their lengths: it is 
the short distance from the sample surface to the first 
bend in the crack path. It is largest at small AT and 
decreases with increasing AT (see arrows in Fig. 2). 
This suggests that the characteristic length visible in 
the crack patterns is equivalent to the final length of 
unstable propagation of hypothetical straight cracks. 
We adopt this view henceforth, and justify it by the 
following explanation. A straight crack would be 
trapped at some depth where ff is low. The real crack, 
however, evades being trapped by changing to a spal- 
ling mode of propagation which still offers sufficient 
energy release, and then stops half-way. 

Luckily we need not consider the intricate problem 
of curved cracks in detail; the experimental fact that, 
after the kinks, the cracks move on in depth, at least 
at higher AT, seems to indicate that further growth is 
not much affected by the existence of the kink in the 
path. Near the mid-plane of the sample, long cracks, 
too, tend to turn to spalling, for similar reasons as the 
short ones did. 

After having tried to explain the crack patterns 
visible on the side faces of the samples, let us turn to 
the patterns appearing on the cooled surface. At low 
AT they provide nothing new in addition to the struc- 
ture seen on the side face. In order to explain their 
changing appearance with increasing AT, we consider 
the other extreme, which is cracking of a thin layer at 
high AT. If the cooled layer is thin compared with the 
thickness of the slab, the type of thermal stress is 
isotropic plane stress. Therefore the cracks form a 
network with no preferred direction. This kind of 
isotropy, of course, is not necessarily related to high 
AT; it would also appear at lower AT if the quenched 
body was bulky enough. 

The dependence of the crack density on A T has been 
explained already for the patterns on the side faces. 
For completeness it should be mentioned that the pat- 
terns provide still more information. As a striking 
feature of Figs 2a to d, cracks on the cooled surface 
run preferentially straight between the edges, and 
parallel to each other. At the time when the surface 
crack pattern forms, the depth to which the cooling 
has penetrated is smaller than the width of the sample, 
as seen from the positions of the kinks in the crack 
paths on the side faces (indicated by arrows). So one 

has to conclude that thermal stress on the cooled face 
is more plane than uniaxial at the moment of crack 
formation; one would then expect a tendency towards 
isotropy in the patterns at lower AT, too, and the 
significantly different appearance of the patterns 
requires an explanation. It seems that in Fig. 2, crack- 
ing is dominated by edge flaws. As stress is uniaxial 
along the edge, cracks starting there move perpen- 
dicular to the edge, which explains the nearly parallel 
straight cracks prevailing in the patterns, especially at 
lower AT. At higher AT, plane stress reveals itself by 
the net-like character appearing in the patterns some 
distance away from the edge. 

5. Concluding remarks 
It has been shown that all the essential features of 
crack patterns appearing on quenched samples can be 
understood by considering single and multiple crack 
propagation in thermal stress fields changing with 
time. It seems that the findings do not much depend on 
whether thermal stress is predominantly uniaxial or 
plane. Thus it may be justified to regard our results 
not as pertaining to a special kind of sample but to 
quenched bodies in general. 

Since the strength retained after shocking depends 
on the length of cracks present within the shocked 
material, a better understanding of thermal shock 
damage, especially strength degradation, may be 
reached by considering the final crack lengths forming 
in thermal shock. Explanations given in the literature 
are based on the pioneering work of Hasselman [12], 
whose model seems to be of remarkable but neverthe- 
less limited power in so far as it does not consider the 
build-up of thermal stress in the course of time. This 
is the reason why we devoted this paper to the under- 
standing of crack patterns. Thermal shock damage as 
seen from this vantage point will be the subject of a 
forthcoming paper [13]. 

Appendix: Time-dependent ~ curves and 
cracking in thermal shock 
The cracking of brittle materials is usually understood 
in the following way. Initial flaws or notches within a 
loaded body can be characterized by the amount of 
energy which they would release when extending their 
size by an incremental cut. The energy per cut area 
released in this way is called the energy release rate ~q. 
As soon as ~ for a given flaw, notch or pre-existing 
crack surpasses a critical value ffc in the course of time, 

crack propagation starts and continues as long as this 
condition is met. It is well known that ffc may also 
depend on crack length or on loading rate more or less 
significantly. It seems, however, that the assumption 
of constant ffc approaches reality sufficiently well in 
our experiments. 

ff depends on the size, shape, position and orien- 
tation of the crack within the body. However, we 
follow the common practice of considering only 
cracks of such a kind and positioned in such a way 
that they are adequately described by only one par- 
ameter, namely the crack length. 
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f# is proportional to the square of the stress which 
would be present within the body in the absence of the 
crack. Since in our problem the load is of thermal 
origin, where the temperature field is non-stationary, 
f# changes with time t. The variables involved enter 
into the formalism as dimensionless combinations, 
namely relative crack length l/b =- x, reduced time 
•t/b 2 =- z and Biot modulus hb/k - fl, where l, b, ~, 
h and k denote crack length, body diameter, thermal 
diffusivity, heat transition and thermal conductivity, 
respectively. For reasons of dimensionality, f# may 
then be written [1-4, 7] as 

= Eb(~zAT)2f(x, z, fl) 

where AT is the temperature difference between the 
sample before cooling and the coolant, �9 is the thermal 
coefficient and E is Young's modulus. Dimensionless 
factors containing Poisson's ratio, which do not any- 
way much differ from unity, are omitted here. 

This suggests that one should plot not f# but 
f ( x ,  z, fl) against x, with the advantage that any 
quenching temperature can be discussed with the same 
plot of curves. We chose to plot families of curves 
generated by the parameter z (Fig. 3). 

We emphasize that the essential features of time- 
dependent c~ curves can be deduced by physical reason- 
ing. This enables us, for instance, to extrapolate the 
numerical results from the literature, which are not 
always given within the whole region of interest. In the 
range of small crack lengths corresponding to natural 
flaws, the published numerical results seem to be of 
low accuracy so that delicate features of the curves do 
not show up there. In this paper we do not keep to 
those numerical results obtained for special sample 
shapes, but prefer plotting schematical cs curves 
instead which are more suitable for explaining things. 

The overall shape of the curves is mainly deter- 
mined by both the initial slope and the fact that c~ 
tends towards zero for long cracks where the crack tip 
is located deep below the quenched layer. 

In the general case of finite Biot modulus fl the 
temperature on the cooled surface changes gradually 
and approaches that of the coolant asymptotically. 
Thus, tensile stress and 0(9/~x increase with time. At 
large times, the situation is characterized by the decay 
of thermal stresses as the temperature gradually levels 
out: the curves become flatter and finally degenerate 
into the abscissa axis. 

Note that there is an envelope to the family of c~ 
curves. This envelope is essential for explaining crack 
propagation. 
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